On the Exact Solution of Wave Equations on Cantor Sets

نویسندگان

  • Dumitru Baleanu
  • Hasib Khan
  • Hossein Jafari
  • Rahmat Ali Khan
چکیده

The transfer of heat due to the emission of electromagnetic waves is called thermal radiations. In local fractional calculus, there are numerous contributions of scientists, like Mandelbrot, who described fractal geometry and its wide range of applications in many scientific fields. Christianto and Rahul gave the derivation of Proca equations on Cantor sets. Hao et al. investigated the Helmholtz and diffusion equations in Cantorian and Cantor-Type Cylindrical Coordinates. Carpinteri and Sapora studied diffusion problems in fractal media in Cantor sets. Zhang et al. studied local fractional wave equations under fixed entropy. In this paper, we are concerned with the exact solutions of wave equations by the help of local fractional Laplace variation iteration method (LFLVIM). We develop an iterative scheme for the exact solutions of local fractional wave equations (LFWEs). The efficiency of the scheme is examined by two illustrative examples. OPEN ACCESS Entropy 2015, 17 6230

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

متن کامل

Traveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer

In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015